Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics

Journal metrics

  • IF value: 1.211 IF 1.211
  • IF 5-year<br/> value: 1.705 IF 5-year
    1.705
  • SNIP value: indexed SNIP
    indexed
  • SJR value: indexed SJR
    indexed
  • IPP value: indexed IPP
    indexed
  • h5-index value: 15 h5-index 15
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Mech. Sci., 9, 201-210, 2018
https://doi.org/10.5194/ms-9-201-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
28 May 2018
Worm gear efficiency model considering misalignment in electric power steering systems
Seong Han Kim Department of Mechanical Engineering, Dong-A University, Busan, Republic of Korea
Abstract. This study proposes a worm gear efficiency model considering misalignment in electric power steering systems. A worm gear is used in Column type Electric Power Steering (C-EPS) systems and an Anti-Rattle Spring (ARS) is employed in C-EPS systems in order to prevent rattling when the vehicle goes on a bumpy road. This ARS plays a role of preventing rattling by applying preload to one end of the worm shaft but it also generates undesirable friction by causing misalignment of the worm shaft.

In order to propose the worm gear efficiency model considering misalignment, geometrical and tribological analyses were performed in this study. For geometrical analysis, normal load on gear teeth was calculated using output torque, pitch diameter of worm wheel, lead angle and normal pressure angle and this normal load was converted to normal pressure at the contact point. Contact points between the tooth flanks of the worm and worm wheel were obtained by mathematically analyzing the geometry, and Hertz's theory was employed in order to calculate contact area at the contact point. Finally, misalignment by an ARS was also considered into the geometry.

Friction coefficients between the tooth flanks were also researched in this study. A pin-on-disk type tribometer was set up to measure friction coefficients and friction coefficients at all conditions were measured by the tribometer.

In order to validate the worm gear efficiency model, a worm gear was prepared and the efficiency of the worm gear was predicted by the model. As the final procedure of the study, a worm gear efficiency measurement system was set and the efficiency of the worm gear was measured and the results were compared with the predicted results. The efficiency considering misalignment gives more accurate results than the efficiency without misalignment.

Citation: Kim, S. H.: Worm gear efficiency model considering misalignment in electric power steering systems, Mech. Sci., 9, 201-210, https://doi.org/10.5194/ms-9-201-2018, 2018.
Publications Copernicus
Download
Short summary
This study proposes a worm gear efficiency model considering misalignment in electric power steering systems. Geometrical and tribological analyses were performed and in order for validation of the model, a worm gear was prepared and the efficiency of the worm gear was predicted by the model. As the final procedure of the study, a worm gear efficiency measurement system was set and the efficiency of the worm gear was measured and the results were compared with the predicted result.
This study proposes a worm gear efficiency model considering misalignment in electric power...
Share