Braghin, F., Cinquemani, S., and Resta, F.: A model of magnetostrictive
actuators for active vibration control, Sensor Actuat. A-Phys., 165,
342–350, 2011.

Brokate, M. and Sprekels, J.: Hysteresis and phase transitions, Applied
mathematical sciences, Vol. 121,
Springer, New York, 1996.

Cao, S. Y., Wang, B. W., Zheng, J. J., Huang, W. M., Sun, Y., and Yang, Q.
X.: Modeling dynamic hysteresis for giant magnetostrictive actuator using
hybrid genetic algorithm, IEEE T. Magn., 42, 911–914, 2006.

Chen, W. M. and Liu, T. S.: Modeling and experimental validation of new two
degree-of-freedom piezoelectric actuators, Mechatronics, 23, 1163–1170,
2013.

Chen, X. and Hisayanna, T.: Adaptive sliding-mode position control for
piezo-actuated stage, IEEE T. Ind. Electron., 55, 3927–3934, 2008.

Chen, X. and Ozaki, T.: Adaptive control for plants in the presence of
actuator and sensor uncertain hysteresis, IEEE T. Automat. Contr., 56,
171–177, 2011.

Chen, X. and Su, C. Y.: Adaptive control for ionic polymer-metal composite
actuators, IEEE T. Syst. Man. Cy. A, 46, 1468–1477, 2016.

Coleman, B. D. and Hodgdon, M. L.: On a class of constitutive relations for
ferromagnetic hysteresis, Arch. Ration. Mech. An., 99, 375–396, 1987.

Feng, Y., Hu, Y. M., Rabbath, C. A., and Su, C. Y.: Robust adaptive control
for a class of perturbed strict-feedback non-linear systems with unknown
Prandtl-Ishlinskii hysteresis, Int. J. Control, 81, 1699–1708, 2008.

Jani, J. M., Leary, M., Subic, A., and Gibson, M. A.: A review of shape
memory alloy research, applications and opportunities, Mater. Design, 56,
1078–1113, 2014.

Kuhnen, K.: Modeling, identification and compensation of complex hysteretic
nonlinearities a modified Prandtl-Ishlinskii approach, Eur. J. Control, 9,
407–418, 2003.

Li, D. W., Li, D. W., Yang, Z. S., He, Z. B., Rong, C., and Su, W. P.:
Dynamic model of a giant magnetostrictive actuator system with time delay,
Aer. Adv. Eng. Res., 62, 236–240, 2016.

Li, Z., Su, C. Y., and Chai, T. Y.: Compensation of hysteresis nonlinearity
in magnetostrictive actuators with inverse multiplicative structure for
preisach model, IEEE T. Autom. Sci. Eng., 11, 613–619, 2014.

Liu, H. F., Jia, Z. Y., Wang, F. J., and Zong, F. C.: Research on the
constant output force control system for giant magnetostrictive actuator
disturbed by external force, Mechatronics, 22, 911–922, 2012.

Liu, Y. F., Li, J., Hu, X. H., Zhang, Z. M., Cheng, L., Lin, Y., and Zhang,
W. J.: Modeling and control of piezoelectric inertia-friction actuators:
review and future research directions, Mech. Sci., 6, 95–107, 2015.

Mayergoyz, I. D.: Mathematical models of hysteresis, Springer-Verlag, New
York, 1991.

Minorowicz, B., Leonetti, G., Stefanski, F., Binetti, G., and Naso, D.:
Design, modelling and control of a micropositioning actuator based on
magnetic shape memory alloys, Smart Mater. Struct., 25, 075005,
https://doi.org/10.1088/0964-1726/25/7/075005, 2016.

Nguyen, M. L., Chen, X., and Yang, F.: Discrete time quasi sliding mode
control with prescribed performance function and its application to
piezo-actuated positioning systems, IEEE T. Ind. Electron., 65, 942–950,
2018.

Niu, M. Q., Yang, B. T., Yang, Y. K., and Meng, G.: Dynamic modelling of
magnetostrictive actuator with fully coupled magneto-mechanical effects and
various eddy-current losses, Sensor Actuat. A-Phys., 258, 163–173, 2017.

Rongge, Y., Bowen, W., Cao, S. Y., and Huang, W. M.: Investigation of current
dependencies of displacement under variable load for giant magnetostrictive
actuators, IEEE T. Magn., 41, 1528–1531, 2005.

Smith, R: Smart Material Systems: Model Development, SIAM, Philadelphia, PA,
2005.

Song, G., Zhao, J. Q., Zhou, X. Q., and de Abreu-Garcia, J. A.: Tracking
control of a piezoceramic actuator with hysteresis compensation using inverse
Preisach model, IEEE-ASME T. Mech., 10, 198–209, 2005.

Su, C. Y., Feng, Y., Hong, H., and Chen, X.: Adaptive control of system
involving complex hysteretic nonlinearities: a generalised Prandtl-Ishlinskii
modelling approach, Int. J. Control, 82, 1786–1793, 2009.

Tan, X. B. and Baras, J. S.: Modeling and control of hysteresis in
magnetostrictive actuators, Automatica, 40, 1469–1480, 2004.

Valadkhan, S., Morris, K., and Shum, A.: A new load-dependent hysteresis
model for magnetostrictive materials, Smart Mater. Struct., 19, 125003,
https://doi.org/10.1088/0964-1726/19/12/125003, 2010.

Wang, Y. J., Zhao, X. Y., Jiao, J., Liu, L. H., Di, W. N., Luo, H. S., and
Or, S. W.: Electrical resistance load effect on magnetoelectric coupling of
magnetostrictive/piezoelectric laminated composite, J. Alloy. Compd., 500,
224–226, 2010.

Zhang, Z., Mao, J. Q., and Zhou, K. M.: Experimental characterization and
modeling of stress-dependent hysteresis of a giant magnetostrictive actuator,
Sci. China Technol. Sci., 56, 656–665, 2013.

Zheng, J. J., Cao, S. Y., Wang, H. L., and Huang, W. M.: Hybrid genetic
algorithms for parameter identification of a hysteresis model of
magnetostrictive actuators, Neurocomputing, 70, 749–761, 2007.

Zhu, Y. C., Yang, X. L., and Wereley, N. M.: Research on hysteresis loop
considering the prestress effect and electrical input dynamics for a giant
magnetostrictive actuator, Smart Mater. Struct., 25, 1–16, 2016.