Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.352 IF 1.352
  • IF 5-year value: 1.615 IF 5-year 1.615
  • CiteScore value: 1.48 CiteScore 1.48
  • SNIP value: 0.965 SNIP 0.965
  • SJR value: 0.288 SJR 0.288
  • IPP value: 1.08 IPP 1.08
  • h5-index value: 12 h5-index 12
  • Scimago H index value: 11 Scimago H index 11
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Volume 9, issue 1
Mech. Sci., 9, 103-121, 2018
https://doi.org/10.5194/ms-9-103-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Mech. Sci., 9, 103-121, 2018
https://doi.org/10.5194/ms-9-103-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 27 Feb 2018

Research article | 27 Feb 2018

Module-based structure design of wheeled mobile robot

Zirong Luo1, Jianzhong Shang1, Guowu Wei2, and Lei Ren3 Zirong Luo et al.
  • 1School of Mechatronics Engineering and Automation, National University of Defence Technology, Changsha 410073, China
  • 2School of Computing, Science and Engineering, University of Salford, Salford M5 4WT, UK
  • 3School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK

Abstract. This paper proposes an innovative and systematic approach for synthesizing mechanical structures of wheeled mobile robots. The principle and terminologies used for the proposed synthesis method are presented by adopting the concept of modular design, isomorphic and non-isomorphic, and set theory with its associated combinatorial mathematics. The modular-based innovative synthesis and design of wheeled robots were conducted at two levels. Firstly at the module level, by creative design and analysing the structures of classic wheeled robots, a wheel module set containing four types of wheel mechanisms, a suspension module set consisting of five types of suspension frames and a chassis module set composed of five types of rigid or articulated chassis were designed and generalized. Secondly at the synthesis level, two kinds of structure synthesis modes, namely the isomorphic-combination mode and the non-isomorphic combination mode were proposed to synthesize mechanical structures of wheeled robots; which led to 241 structures for wheeled mobile robots including 236 novel ones. Further, mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots that were proposed in this paper. Eventually, physical prototypes of sample wheeled robots/rovers were developed and tested so as to prove and validate the principle and methodology presented in this paper.

Publications Copernicus
Download
Short summary
A systematic method was proposed for the synthesis and creative design of novel structures that can be used to build wheeled mobile robot. The proposed method has led to 236 new design schemes. Mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots. Physical prototypes of sample wheeled robots were developed and tested, proving and validating the principle and methodology presented.
A systematic method was proposed for the synthesis and creative design of novel structures that...
Citation
Share