Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.052 IF 1.052
  • IF 5-year value: 1.567 IF 5-year
    1.567
  • CiteScore value: 1.92 CiteScore
    1.92
  • SNIP value: 1.214 SNIP 1.214
  • IPP value: 1.47 IPP 1.47
  • SJR value: 0.367 SJR 0.367
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 18 Scimago H
    index 18
  • h5-index value: 16 h5-index 16
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Volume 7, issue 1
Mech. Sci., 7, 69–77, 2016
https://doi.org/10.5194/ms-7-69-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Mech. Sci., 7, 69–77, 2016
https://doi.org/10.5194/ms-7-69-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Mar 2016

Research article | 07 Mar 2016

Towards developing product applications of thick origami using the offset panel technique

Michael R. Morgan1, Robert J. Lang2, Spencer P. Magleby1, and Larry L. Howell1 Michael R. Morgan et al.
  • 1Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
  • 2Lang Origami, Alamo, CA 94507, USA

Abstract. Several methods have been developed to accommodate for the use of thick materials in origami models which preserve either the model's full range of motion or its kinematics. The offset panel technique (OPT) preserves both the range of motion and the kinematics while allowing for a great deal of flexibility in design. This work explores new possibilities for origami-based product applications presented by the OPT. Examples are included to illustrate fundamental capabilities that can be realized with thick materials such as accommodation of various materials in a design and manipulation of panel geometry resulting in an increased stiffness and strength. These capabilities demonstrate the potential of techniques such as the OPT to further inspire origami-based solutions to engineering problems.

Publications Copernicus
Download
Short summary
The offset panel technique (OPT) is a method which accommodates for the use of thick materials in origami models and preserves both the range of motion and the kinematics. This work explores new possibilities for origami-based product applications presented by the OPT. Examples are included to illustrate some of the capabilities of the OPT, including the use of various materials in a design and manipulation of panel geometry resulting in increased stiffness and strength in the design.
The offset panel technique (OPT) is a method which accommodates for the use of thick materials...
Citation