Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.052 IF 1.052
  • IF 5-year value: 1.567 IF 5-year
    1.567
  • CiteScore value: 1.92 CiteScore
    1.92
  • SNIP value: 1.214 SNIP 1.214
  • IPP value: 1.47 IPP 1.47
  • SJR value: 0.367 SJR 0.367
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 18 Scimago H
    index 18
  • h5-index value: 16 h5-index 16
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Volume 7, issue 1
Mech. Sci., 7, 61-68, 2016
https://doi.org/10.5194/ms-7-61-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Mech. Sci., 7, 61-68, 2016
https://doi.org/10.5194/ms-7-61-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Feb 2016

Research article | 10 Feb 2016

A continuum anisotropic damage model with unilateral effect

A. Alliche A. Alliche
  • Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, 75005 Paris, France

Abstract. A continuum damage mechanics model has been derived within the framework of irreversible thermodynamics with internal variables in order to describe the behaviour of quasi-brittle materials under various loading paths. The anisotropic character induced by the progressive material degradation is explicitly taken into account, and the Helmholtz free energy is a scalar function of the basic invariants of the second order strain and damage tensors. The elastic response varies depending on the closed or open configuration of defects. The constitutive laws derived within the framework of irreversible thermodynamics theory display a dissymmetry as well as unilateral effects under tensile and compressive loading conditions. This approach verifies continuity and uniqueness of the potential energy. An application to uniaxial tension-compression loading shows a good adequacy with experimental results when available, and realistic evolutions for computed stresses and strains otherwise.

Publications Copernicus
Download
Citation
Share