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Abstract. Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of

compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola

shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that

maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation

error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure

hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic

flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element

analysis (FEA) and experiment tests are performed to verify the modeling method. Finally, a multi-objective

optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.

1 Introduction

Flexure hinges is a substitution of conventional rotational

joint in precision engineering. The monolithic structure

brings flexure hinge various superior properties, e.g. high res-

olution, fine precision, compact structure, and the elimina-

tion of friction and lubrication (Paros and Weisbord, 1965).

Therefore, flexure hinges are widely employed in micro posi-

tioning stages, precision alignment devices, micro manipula-

tors, scanning electron microscopy and antennas where high

precision and high resolution are required (Pham and Chen,

2005; Yong et al., 2008; Du et al., 2014). However, despite

all the advantages aforementioned, flexure hinges also have

some inherent shortcomings, for example the limited motion

range restricted by the allowable stress and strain of the ma-

terial. In addition, the rotational center shift also reduces the

absolute accuracy of flexure hinge based compliance mecha-

nisms.

The movability of a flexure hinge comes from the defor-

mation of its structure. The 3-D sketch of a flexure hinge is

shown in Fig. 1, it can be seen that the deformation almost ex-

clusively takes place in the weakest region. In order to avoid

plastic deformation the movability of the flexure hinges are

severely restricted (Friedrich et al., 2014). A promising ap-

proach to enhance their motion capacity is to use superelas-

tic materials, e.g. shape memory alloy (SMA), to fabricate

flexure hinges since they can provide much larger allowable

strains. The maximum recoverable strain of SMA is about

8 %, while for the most frequently used materials to fabricate

flexure hinges, e.g. steel or aluminum, the maximum recover-

able strain is 0.2–0.4 % (Desroches and Delemont, 2002). As

it is mentioned in Hesselbach and Raatz (2000), the motion

range of a flexure hinge made of SMA can reach as much as

30◦, which can satisfy most of the application requirements

for revolution joints in parallel mechanisms.

However, formulating a static deformation model for the

superelastic flexure hinge is a challenging work. Although

the flexure hinges can be modeled as Euler beams since the

minimum thickness of a planar flexure hinge is much less

than the hinge length (Chen et al., 2011), nonlinearities in-

troduced by large deformation and the constitutive relation-

ship of superelastic material made it extremely difficult to

obtain analytic solutions to describe the static response of

the flexure hinges. Previous modeling methods, like the inte-

gration of beam theory (Wu and Zhou, 2002), Castigliano’s

second theorem (Lobontiu et al., 2002a), and pseudo rigid

body method (Kim et al., 2013) are also infeasible to solve
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Figure 1. The 3-D model of the proposed ellipse-parabola shaped

flexure hinge.

this problem. In this paper, we will use nonlinear finite el-

ement method (FEM) to formulate the relationship between

the deformation and loads of superelastic flexure hinges.

The performance of a flexure hinge is completely deter-

mined by its notch shape, once the material of the flex-

ure hinge is chosen. Various types of flexure hinges with

different shapes have been investigated in the past years,

e.g. V-shaped flexure hinges (Tian et al., 2010), parabolic

and hyperbolic flexure hinges (Lobontiu et al., 2002b; Chen

et al., 2009), elliptical-arc-fillet flexure hinges (Chen et

al., 2008), flexure hinges that considered the machining er-

rors (Shi et al., 2013), and even the exponent-sine-shaped

flexure hinges (Wang et al., 2013). But these flexure hinges

defined by only few parameters that restrict the degree of

freedom to choose optimal shapes of flexure hinges. De Bona

and Gh Munteanu (2005) illustrated a flexure hinge con-

structed by a group of cubic-spline curves which maximized

the probability to find out the optimal flexure hinges, how-

ever it needs 9 parameters to formulate the shape, which will

increase the computational complexity of the optimization

dramatically, especially for flexure hinges made of supere-

lastic materials.

To obtain a balance between the diversity of the optimiza-

tion and the computational complexity, this paper proposed

a new type of ellipse-parabola shaped flexure hinge which

is constructed by an ellipse arc and a parabola curve. The

parameters that defining the profile of the ellipse-parabola

shaped flexure hinge are the notch length, the minimum

thickness, the ellipticity of the ellipse arc and the terminated

eccentric angle. It can describe a large range of flexure hinges

by change the values of the parameters and all the parameters

have certain meanings in geometry.

The multi-objective optimization is performed for the

ellipse-parabola shaped superelastic flexure hinge to obtain

excellent comprehensive performances. The remainder of

this paper is organized as follows. Section 2 gives a descrip-

tion of the proposed ellipse-parabola shaped flexure hinge.

Section 3 establishes the static deformation model of the flex-

ure hinge by using nonlinear beam elements derived by the

Figure 2. The 2-D schematic of the ellipse-parabola shaped flexure

hinge.

co-rotational approach. The deformation model has been ver-

ified by FEA and experiment test in Sect. 4. In Sect. 5, the

multi-objective optimization of the ellipse-parabola shaped

superelastic flexure hinge is formulated and the Pareto fron-

tier is found via the NSGA-II algorithm. Finally, the conclu-

sions of this paper is presented in Sect. 6.

2 Structure of the ellipse-parabola shaped flexure

hinge

The elliptic flexure hinge has relative larger motion range

than the parabolic flexure hinge and the hyperbolic flexure

hinge, and the parabolic flexure hinge has a higher trans-

mission accuracy than the elliptic flexure hinge (Lobontiu et

al., 2002a). Better comprehensive performances of a flexure

hinge can be obtained by combining the two profiles together.

The proposed ellipse-parabola shaped flexure hinge is shown

in Fig. 1.

It can be seen that the ellipse-parabola shaped flexure

hinge is fully symmetric and o-xyz is the corresponding

Cartesian coordinate, the origin is located at the center of the

structure, x axis follows with the longitudinal axis of sym-

metry and z axis coincides with the transverse axis. A 2-D

sketch of the flexure hinge is illustrated in Fig. 2. The profile

consists of two parts, i.e. an ellipse arc and a parabola curve,

the two curves are smoothly connected at the intersection p2.

Moreover, l denotes the notch length of the flexure hinge, t

denotes the minimum thickness, and h and d are the height

and width of the flexure hinge respectively.

Curve s1 is an ellipse arc with its center is located at (0, h
2

),

and it can be represented in a parametric form as below,{
x (ϕ)= necosϕ

z (ϕ)= nsinϕ+
h

2

ϕt ≤ ϕ ≤ 0 and −
π

2
≤ ϕt ≤ 0, (1)

where n= h−ts
2

is the vertical semi-axe, e is the ellipticity of

the ellipse arc which is the quotient of the horizontal semi-

axe and the vertical semi-axe, the parameter ϕ is the eccentric

angle, and ϕt is the terminated eccentric angle at p2.

The parabola curve s2 passes through p2 =(
necosϕt,nsinϕt+

h
2

)
and p3 =

(
l
2
, h

2

)
, and have the

same slope with s1 at point p2. Then, the thickness of

the flexure hinge in s2 can be formulated by applying the
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Figure 3. Notch shapes with different ϕt (e = 2 and ϕt ranges from

−
7π
16

to − 3π
16

).

Hermite interpolation.

z (x)= a(x− necosϕt)
2
+ b (x− necosϕt)+ c. (2)

The coefficients in Eq. (2) are given by

a =
2l cosϕt− 4ne

e sinϕt(l− 2necosϕt)
2
, b =−

1

e tanϕ
, and

c =

(
h

2
+ nsinϕt

)
.

To further illustrate the shape of the proposed ellipse-

parabola shaped flexure hinge, suppose that l = 30 mm,

ts = 0.4 mm, and h= 10 mm, then the profile is fully deter-

mined by e and ϕt. Figure 3 shows the profiles of the flexure

hinges with different ϕt, where the ellipticity e = 2, ϕt ranges

from − 7π
16

to − 3π
16

, and the red dots in the figure are the in-

tersections, i.e. p2. It can be seen that the percentage of s1
in the whole profile increases with the increase of ϕt. On the

other hand, for a given ϕt =−
π
3

, and e ranges from 1 to 3,

the profiles are shown in Fig. 4, it can be seen that the flex-

ure hinges become more flat with the increase of e, thus the

effective deform length increases.

3 Modeling of the superelastic flexure hinges

The ellipse-parabola shaped superelastic flexure hinge can

be considered as a cantilever beam with variable cross sec-

tion, geometric and material nonlinearities. In this paper, we

use the nonlinear FEM to model deformation of the flexure

hinge. The co-rotational approach provides an effective way

to derive beam elements with geometric nonlinearity. By in-

troducing a local coordinate system (LCS) attached on the

Figure 4. Notch shapes with different e (ϕt =−
π
3

and e ranges

from 12 to 20).

element, the displacement and the deformation of the ele-

ment is separated, and then a simple form of the local tan-

gent stiffness matrix and internal force vector of the element

are obtained. The co-rotational method used here is similar to

those in Pacoste and Eriksson (1997) and Criesfield (1991),

and briefly described in the following discussion.

Figure 5 shows a two-node beam element in the initial and

current configurations. The coordinate of the two nodes in

the global coordinate system (GCS) xoz are (x1, y1) and (x2,

y2) initially, and the global nodal displacement vector of the

element is given by

qg = {u1,w1,θ1,u2,w2,θ2}
T , (3)

where u and w are nodal displacements in the x and z di-

rection respectively; θ is the nodal rotation angle, and the

subscripts 1 and 2 refer to the nodes 1 and 2.

The LCS xlolzl is assigned as that its origin is located

at node 1 and x axis directs to node 2. Thus, the local dis-

placement vector of the element contains only 3 components

shown as below

q l =
{
u,θ1,θ2

}T
. (4)

Based on the kinematics depicted in Fig. 5, the axis displace-

ment and rotation angles of the two nodes in LCS can be

obtained

u= L−L0

θ1 = θ1−α (5)

θ2 = θ2−α

where L0 and L are the initial and current length of the ele-

ment respectively, and α is the rigid rotational displacement
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Figure 5. Beam kinematics.

of the element and formulated as below,

L0 =

√
(x2− x1)2

+ (z2− z1)2

L=

√
(x2+ u2− x1− u1)2

+ (z2+w2− z1−w1)2 (6)

α = β −β0 = arctan

(
z2+w2− z1−w1

x2+ u2− x1− u1

)
− arctan

(
z2− z1

x2− x1

)

Taking a differentiation of the Eq. (5) on both side, the

relationship between the local virtual displacement δq l and

the global virtual displacement δqg can be expressed as

δq l = Bδqg, (7)

where B is the transformation matrix.

Since the virtual work of the element is equivalent in both

LCS and GCS, the global internal nodal force vector f g can

be formulated as

f g = BT f l, (8)

where f l =
{
N,M1,M2

}
is the local internal nodal force

vector.

By taking the differentiation of Eq. (8) with respect to the

global nodal displacement, the global tangent stiffness matrix

is obtained

Kg =
∂f g

∂qg

= BTKlB+
N

L
zzT +

M1+M2

L2

(
zrT + rzT

)
, (9)

where Kl is the local stiffness matrix and defined by δf l =

Klδq l, r and z are transformation matrices r= bT1 , z= ∂r
∂β

,

and b1 is the first row of matrix B.

Based on the Euler–Bernoulli beam theory, the axial strain

in a beam element for large deformation is given by

ε (x,z)=
∂u0 (x)

∂x
+

1

2

(
∂w0 (x)

∂x

)2

− z
∂2w0 (x)

∂x2
, (10)

where u0 (x) and w0 (x) are the axial and transverse displace-

ment on the beam mid-plane respectively. Applying the clas-

sical linear and cubic interpolation for the axial displacement

u0 (x) and transverse displacement w0 (x) respectively, the

axial displacement u0 (x) can be then rewritten as

u0 =
x

L
u (11)

and the transverse displacement w0 (x) is given as

w0 =

(
x− 2

x2

L
+
x3

L2

)
θ1+

(
−
x2

L
+
x3

L2

)
θ2. (12)

Considering the membrane locking involved in this problem,

the first two items in Eq. (10) are replaced by the average

axial strain which is defined as following

εma =
1

L

L∫
0

[
∂u0

∂x
+

1

2

(
∂w0

∂x

)2
]

dx. (13)

Computing the integration in Eq. (13) and combine with

Eq. (10), the axial strain ε can be rewritten as

ε =
u

L
+ z

((
4

L
−

6x

L2

)
θ1+

(
2

L
−

6x

L2

)
θ2

)
+

1

15
θ

2

1

+
1

30
θ1θ2+

1

15
θ

2

2 (14)

The local internal forces are then calculated by applying prin-

ciple of virtual work.

V =

∫
v

σδεdv =Nδu+M1δθ1+M2δθ2. (15)

Superelasticity of SMA refers to that the material can un-

dergo very large non-elastic strains and get fully recovered

by unloading because of the phase transportation of the mate-

rial’s microstructure (Liew et al., 2004). The uniaxial isother-

mal stress-strain curve of Nitinol (the most frequently used

SMA) measured by experiment is presented in Fig. 6. To de-

scribe the nonlinear relationship between the stress and strain

of the material, a bilinear constitutive model is adopted in this

paper.

σ =

{
Eε (ε ≤ εs)

σs+E1 (ε− εs) (ε > εs)
(16)

where E is the Young’s modulus of the material in the elastic

stage, E1 is the modulus in phase transformation, εs and σs

are the strain and stress at the start point of transformation

respectively, εf and σf are the strain and stress at the finial

point of transformation.

Substituting Eqs. (14) and (16) into Eq. (15) and separat-

ing variables yield the local internal forces of the element.
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Figure 6. Experimental data of Nitinol uniaxial tensile behavior

and the bilinear constitutive model.

And the local tangent stiffness matrix is than obtained by tak-

ing differential of the local internal force with respect to the

components of q l respectively

Kli,j =
∂f li

∂q lj

(i = 1. . .3,j = 1. . .3) . (17)

Combining Eqs. (15)–(17) with Eq. (9), the global tangent

stiffness matrix of the element Kg and the global internal

force vector F g of the beam element can be obtained.

The derived global force vector F g and global tangent

stiffness matrix Kg of the element are then assembled to con-

struct equilibrium equations of the structure. The system of

nonlinear equations is solved by a load control algorithm.

And the Newton–Raphson method is used to obtain the nodal

displacements that minimize the residual stress during every

incremental load step. A program implementing this algo-

rithm has been written in Matlab. The end displacements and

the stress and strain on the structure can be easily acquired

by the program.

4 Verification

To validate the proposed co-rotational beam element based

model (CRM), both finite element analysis by ANSYS

(AFE) and experimental tests (EXP) are conducted. The

height and the width of the flexure hinge samples are

designed as h= 10 mm and d = 5 mm. The correspond-

ing parameters of the material obtained from experimental

measurement are as follow: E = 58.51 GPa, E1 = 1.5 GPa,

σs = 346 MPa, σf = 410 MPa.

The AFE model of the ellipse-parabola shaped superelas-

tic flexure hinge is established via the APDL language and

Figure 7. The finite element model in ANSYS.

Figure 8. The experiment setup. (1: the base; 2: the flexure hinge

sample; 3: the loading device; 4: the CCD camera)

discretized by 20-node solid 186 elements in a mapped mesh-

ing way as shown in Fig. 7. The bilinear constitutive model

is introduced into the model by the TB command. And the

flexure hinge is fixed on one end, and loaded with a moment

My on the other end.

The photograph of the experiment setup is illustrated in

Fig. 8. The deformation of the flexure hinge samples are ob-

tained by a computer vision measurement system. The CCD

camera (PointGrey BFLY-PGE-50H5M-C) with 2448×2048

pixels is used and the measurement area is about 20mm×

16mm. Thus the resolution of the vision measurement is bet-

ter than 8 µm and 1 mrad for transverse displacement and ro-

tational angle respectively.

Three sample flexure hinges are manufactured by WEDM

and deformed by standard weights via the loading device.

The moment introduced by the loading device is also taken

into consideration to calculate the deformation of the flex-

ure hinge. Transverse displacement of point N and slope

of line MN are obtained by the computer vision measure-

ment system. For easy to comparison, the transverse and ro-
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tational displacement of point P obtained by CRM and AFE

are transformed into the deformation information of point N

through a geometric transformation.

The result obtained by different methods are listed in Ta-

ble 1, where w is the transverse displacements at point N ,

and θ is the rotational angle. It can be seen that the results cal-

culated by CRM agree well with those by AFE and EXP, and

the maximum relative errors are within 1.5 and 7 % respec-

tively. The deviation between the CRM and the EXP may be

caused by the approximation of the constitutive model and

the manufacturing error of the flexure hinge.

It should be pointed out that the AFE model consists of ap-

proximately 3200 elements, and consumes more than 350 s

to calculate the results, while the CRM contains only 20 el-

ements and complete the solution within 5 s which is almost

70 times faster than AFE. It will be really helpful for the op-

timization of superelastic flexure hinges which will be dis-

cussed in the following section.

5 Multi-objective optimization of the superelastic

flexure hinge

5.1 Optimization objectives

The flexure hinge is designed to serve as a rotational joint

with its rotation center is located at the geometric center of

the thinnest region. But it does not behave exactly as the

ideal rotational joint. Considering the characteristics of the

ellipse-parabola shaped superelastic flexure hinge, three per-

formance indexes have been defined.

Motion range θmax The motion range θmax of an ellipse-

parabola shaped superelastic flexure hinge is defined as

the rotational angle between its two end sections, when

the maximum strain on the structure up to the admissi-

ble strain. Though the maximum recoverable strain of

the Nitinol used in this paper is about 4.9 % as shown in

Fig. 6, we set the allowable strain as 3 % in this paper to

obtain a long life cycle.

Relative rotational error γ The trace at the free end of the

ellipse-parabola shaped superelastic flexure hinge is not

a perfectly circular arc, because the rotation center of

the flexure hinge significantly shifts during the defor-

mation. This may introduce undesirable errors for trans-

mission. The relative rotational error is defined as,

γ =
1r

θmax

, (18)

where1r is the deviation between the flexure hinge and

an ideal rotational joint at the maximum rotation angle

θmax, and it is given by

1r =

√[
u+

l

2
(1− cosθmax)

]2

+

(
w−

l

2
sinθmax

)2

.

Relative compliance ρ The flexure hinges should be very

compliant in the motion axis and relative stiff in other

directions, therefore the relative compliance is defined

as:

ρ =
Cm

Cf

, (19)

where Cm and Cf are the angular compliance about

y axis and the linear compliance along x axis respec-

tively, and they can be defined as

Cm =
θmax

Mymax

,Cf =
1

dE

l∫
0

1

2z (x)
dx,

in which Mymax is the moment loaded at the free end of

the superelastic flexure hinge when θmax is reached.

The optimization problem aims to determine a set of op-

timal geometric parameters of the superelastic flexure hinge

that minimize the difference between a superelastic flexure

hinge and an ideal rotational joint, i.e. maximize the motion

range and the relative compliance and minimize the relative

rotation error during the deformation as well. Thus, the opti-

mization objectives can be described as:

f (x)=
[
−θmax,γ,−ρ

]
→min. (20)

5.2 Design variables and optimization constraints

The ellipse-parabola shaped superelastic flexure hinge inves-

tigated in this paper is made of a rectangular Nitinol strip

by removing two symmetric cutouts. Among the parameters

that define the geometry of the flexure hinge, the height h

and width d are determined by the Nitinol strip and the min-

imum thickness of the hinge t is determined by the process-

ing method. In order to optimize the ellipse-parabola shaped

superelastic flexure hinge, three design variables are intro-

duced: the length of flexure hinge l, the ellipticity of the el-

lipse arc e and the eccentric angle ϕt at p2. Hence, the design

parameters vector x is given by:

x = [l,e,ϕt] . (21)

According the definition of the flexure hinge profile two ge-

ometric constraints have to be added. The first one is related

to the x coordinate of point p2,

g1 (x)= necosϕt−
l

2
≤ 0. (22)

And the second constraint is to make sure that the curve is

monotonous, thus the slop of the profile at p3 must be posi-

tive

g2 (x)=−2a

(
l

2
− necosϕt

)
− b ≤ 0. (23)

The boundary constraints in this optimization problem are

defined as below

5≤ l ≤ 40; 1≤ e ≤ 5; −
π

2
≤ ϕt ≤ 0. (24)

Mech. Sci., 7, 127–134, 2016 www.mech-sci.net/7/127/2016/
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Table 1. Displacements calculated by CRM, AFE and EXP.

l e ϕt My Method w Error θ Error

(mm) (rad) (Nmm) (mm) (%) (◦) (%)

15 3 −
7
16
π 71.024

CRM 17.6575 – 18.3003 –

FEM 17.8665 1.1695 18.5121 1.1440

EXP 18.8895 6.5217 19.6255 6.7528

20 2 −
1
3
π 71.488

CRM 13.1756 – 12.8801 –

FEM 13.2491 0.5550 12.9546 0.5750

EXP 13.7327 4.0567 13.4359 4.1365

25 1.5 −
1
4
π 72.231

CRM 11.0124 – 10.2674 –

FEM 11.0842 0.6479 10.3362 0.6652

EXP 11.4332 3.6808 10.6627 3.7077

5.3 Optimization and results

The problem defined by Eqs. (20)–(24) is an optimiza-

tion problem with nonlinear constraints. In the traditional

methodology, the objectives defined in Eq. (20) are generally

converted into a single objective function by using different

weighting factors. However, this methodology can only ob-

tain a single optimal solution, and the determination of the

weighting factors depends heavily on experiences. While the

multi-objective optimization treats all the objectives sepa-

rately and delivers a set of optimal solutions form the Pareto

frontier. A Pareto optimal solution is one that any improve-

ment in an objective will cause degradation in other objec-

tives, and all Pareto optimal solutions are considered equally

good.

In this paper, NSGA-II is adopted to find the Pareto fron-

tier of the multi-objective optimization problem. NSGA-II

is a multi-objective exploratory technique, which has been

successfully used in many engineering optimization jobs

(Nikkhah Kashani and Rafiei, 2014; Ma et al., 2013; Kela-

iaia et al., 2012) and is becoming one of the most popular

methods to multi-objective problems. For the current work,

we use a population size of 100, a number of generations

of 100, and a mutation probability of 0.3. All possible and

optimal solutions which considering the three objectives si-

multaneously are shown in Fig. 9. The results indicate that

the algorithm was able to find the Pareto front with good dis-

tribution.

Table 2 lists 6 representative optimal solutions ranked

by motion range θmax, where the index k is the rank of

θmax in the Pareto solution set. At the extreme point f1, the

ellipse-parabola shaped flexure hinge has the minimum mo-

tion range but higher rotation precision and relative compli-

ance. While at the other extreme point f6, the flexure hinge

has the maximum motion range but lower rotation precision

and relative compliance. All the other points are intermedi-

ate optimal solutions. The designers can select the optimal

geometric parameters from the obtained Pareto solution set

based on practical requirements.

Figure 9. Pareto front obtained by NSGA-II.

6 Conclusion

A novel type of superelastic flexure hinge, called ellipse-

parabola shaped flexure hinge, is proposed in this paper to

achieve optimal comprehensive performance. The ellipse-

parabola shaped flexure hinge is constructed by an ellipse

arc and a parabola curve and smoothly connected at the

intersection. The static response of the hinge is solved by

non-prismatic beam elements which considered the geomet-

ric and material nonlinearities. Finite element analysis and

experiment tests proved the accuracy and efficiency of the

proposed method. The maximum relative error of CRM is

within 1.5 % and 7 % compared to the AFE and the EXP re-

spectively. A multi-objective optimization aims to maximize

the motion range and the relative compliance of the ellipse-

parabola shaped flexure hinge as well as to minimize the rel-

ative rotation error during the deformation is conducted. And

the Pareto frontier is found by using the NSGA-II algorithm.

The optimization methodology presented in this article can

be used and extended in the design process of other shaped

superelastic flexure hinges.
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Table 2. The optimal solutions.

Point k Geometric parameter Performance

l (mm) e (mm) ϕt (rad) θmax (◦) γ (µmrad−1) ρ

f1 1 10.179 2.673 −1.498 13.810 45.738 97.296

f2 6 14.899 4.912 −1.393 19.645 77.875 142.900

f3 12 32.484 4.981 −1.146 26.347 161.207 127.878

f4 18 11.845 4.969 −1.456 29.093 214.126 120.615

f5 24 8.673 4.950 −1.401 32.747 372.203 72.782

f6 30 20.893 4.981 −1.236 34.399 457.984 61.899
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