Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.052 IF 1.052
  • IF 5-year value: 1.567 IF 5-year
    1.567
  • CiteScore value: 1.92 CiteScore
    1.92
  • SNIP value: 1.214 SNIP 1.214
  • IPP value: 1.47 IPP 1.47
  • SJR value: 0.367 SJR 0.367
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 18 Scimago H
    index 18
  • h5-index value: 16 h5-index 16
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Volume 7, issue 1
Mech. Sci., 7, 127–134, 2016
https://doi.org/10.5194/ms-7-127-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Mech. Sci., 7, 127–134, 2016
https://doi.org/10.5194/ms-7-127-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 May 2016

Research article | 12 May 2016

Multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge

Zhijiang Du, Miao Yang, and Wei Dong Zhijiang Du et al.
  • State Key Laboratory of Robotics and System, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, China

Abstract. Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element analysis (FEA) and experiment tests are performed to verify the modeling method. Finally, a multi-objective optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.

Publications Copernicus
Download
Citation