Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.052 IF 1.052
  • IF 5-year value: 1.567 IF 5-year
    1.567
  • CiteScore value: 1.92 CiteScore
    1.92
  • SNIP value: 1.214 SNIP 1.214
  • IPP value: 1.47 IPP 1.47
  • SJR value: 0.367 SJR 0.367
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 18 Scimago H
    index 18
  • h5-index value: 16 h5-index 16
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Volume 6, issue 2
Mech. Sci., 6, 245-254, 2015
https://doi.org/10.5194/ms-6-245-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Modelling and control of robots

Mech. Sci., 6, 245-254, 2015
https://doi.org/10.5194/ms-6-245-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Oct 2015

Research article | 26 Oct 2015

Successive dynamic programming and subsequent spline optimization for smooth time optimal robot path tracking

M. Oberherber, H. Gattringer, and A. Müller M. Oberherber et al.
  • Institute of Robotics, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

Abstract. The time optimal path tracking for industrial robots regards the problem of generating trajectories that follow predefined end-effector (EE) paths in shortest time possible taking into account kinematic and dynamic constraints. The complicated tasks used in industrial applications lead to very long EE paths. At the same time smooth trajectories are mandatory in order to increase the service life.

The consideration of jerk and torque rate restrictions, necessary to achieve smooth trajectories, causes enormous numerical effort, and increases computation times. This is in particular due to the high number of optimization variables required for long geometric paths. In this paper we propose an approach where the path is split into segments. For each individual segment a smooth time optimal trajectory is determined and represented by a spline. The overall trajectory is then found by assembling these splines to the solution for the whole path. Further we will show that by using splines, the jerks are automatically bounded so that the jerk constraints do not have to be imposed in the optimization, which reduces the computational complexity. We present experimental results for a six-axis industrial robot. The proposed approach provides smooth time optimal trajectories for arbitrary long geometric paths in an efficient way.

Publications Copernicus
Special issue
Download
Short summary
The time optimal path following problem for industrial robots regards the problem of generating trajectories that follow predefined end-effector paths in shortest time possible, taking into account kinematic and dynamic constraints. This paper proposes an approach to deal with arbitrary long geometric paths. Further a method is presented to achieve suitable smooth trajectories for an implementation on a real robot, in an easy way.
The time optimal path following problem for industrial robots regards the problem of generating...
Citation
Share