Articles | Volume 4, issue 2
https://doi.org/10.5194/ms-4-345-2013
https://doi.org/10.5194/ms-4-345-2013
Research article
 | 
15 Oct 2013
Research article |  | 15 Oct 2013

New empirical stiffness equations for corner-filleted flexure hinges

Q. Meng, Y. Li, and J. Xu

Related authors

Design of a soft bionic elbow exoskeleton based on shape memory alloy spring actuators
Qiaolian Xie, Qiaoling Meng, Wenwei Yu, Rongna Xu, Zhiyu Wu, Xiaoming Wang, and Hongliu Yu
Mech. Sci., 14, 159–170, https://doi.org/10.5194/ms-14-159-2023,https://doi.org/10.5194/ms-14-159-2023, 2023
Short summary
Electromyogram-based motion compensation control for the upper limb rehabilitation robot in active training
Qiaoling Meng, Yiming Yue, Sujiao Li, and Hongliu Yu
Mech. Sci., 13, 675–685, https://doi.org/10.5194/ms-13-675-2022,https://doi.org/10.5194/ms-13-675-2022, 2022
Short summary
Bionic design and analysis of a multi-posture wheelchair
Qiaoling Meng, Mingpeng Jiang, Zongqi Jiao, and Hongliu Yu
Mech. Sci., 13, 1–13, https://doi.org/10.5194/ms-13-1-2022,https://doi.org/10.5194/ms-13-1-2022, 2022
Short summary
An innovative equivalent kinematic model of the human upper limb to improve the trajectory planning of exoskeleton rehabilitation robots
Qiaolian Xie, Qiaoling Meng, Qingxin Zeng, Hongliu Yu, and Zhijia Shen
Mech. Sci., 12, 661–675, https://doi.org/10.5194/ms-12-661-2021,https://doi.org/10.5194/ms-12-661-2021, 2021
Short summary
Design and evaluation of a novel upper limb rehabilitation robot with space training based on an end effector
Qiaoling Meng, Zongqi Jiao, Hongliu Yu, and Weisheng Zhang
Mech. Sci., 12, 639–648, https://doi.org/10.5194/ms-12-639-2021,https://doi.org/10.5194/ms-12-639-2021, 2021
Short summary

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Numerical Modeling and Analysis
Influence of a walking mechanism on the hydrodynamic performance of a high-speed wheeled amphibious vehicle
Haijun Xu, Liyang Xu, Yikun Feng, Xiaojun Xu, Yue Jiang, and Xue Gao
Mech. Sci., 14, 277–292, https://doi.org/10.5194/ms-14-277-2023,https://doi.org/10.5194/ms-14-277-2023, 2023
Short summary
An investigation into the micro-geometric tapered-shape surface design of the piston bore of a piston–cylinder interface in an axial piston motor
Rui Liu, Yishan Zeng, Min Hu, Huabing Zhu, Changhai Liu, and Lei Wang
Mech. Sci., 14, 259–275, https://doi.org/10.5194/ms-14-259-2023,https://doi.org/10.5194/ms-14-259-2023, 2023
Short summary
Synthesis of clearance for a kinematic pair to prevent an overconstrained linkage from becoming stuck
Jian Qi, Yuan Gao, and Fufu Yang
Mech. Sci., 14, 171–178, https://doi.org/10.5194/ms-14-171-2023,https://doi.org/10.5194/ms-14-171-2023, 2023
Short summary
Tooth profile design of a novel helical gear mechanism with improved geometry for a parallel shaft transmission
Enyi He and Shihao Yin
Mech. Sci., 13, 1011–1018, https://doi.org/10.5194/ms-13-1011-2022,https://doi.org/10.5194/ms-13-1011-2022, 2022
Short summary
Instability load analysis of a telescopic boom for an all-terrain crane
Jinshuai Xu, Yingpeng Zhuo, Zhaohui Qi, Gang Wang, Tianjiao Zhao, and Tianyu Wang
Mech. Sci., 13, 991–1009, https://doi.org/10.5194/ms-13-991-2022,https://doi.org/10.5194/ms-13-991-2022, 2022
Short summary

Cited articles

Berselli, G.: On designing compliant actuators based on dielectric elastomers, University of Bologna, Ph.D. thesis, 2009.
Chen, G. M., Jia, J. Y., and Li, Z. W.: Right-circular corner-filleted flexure hinges, in: Proceedings of the IEEE International Conference on Automation Science and Engineering, 249–253, 2005.
Dong, W., Du, Z., and Sun, L.: Stiffness influence atlases of a novel flexure hinge-based parallel mechanism with large workspace, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 856–861, 2005.
Dong, W., Sun, L., and Du, Z.: Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints, Precis. Eng., 32, 222–231, 2008.
Du, Y., Chen, G., and Liu, X.: Elliptical-arc-fillet flexure hinges: toward a generalized model for compmonly used flexure hinges, J. Mech. Design, 133, 1–9, 2011.