Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.052 IF 1.052
  • IF 5-year value: 1.567 IF 5-year
    1.567
  • CiteScore value: 1.92 CiteScore
    1.92
  • SNIP value: 1.214 SNIP 1.214
  • IPP value: 1.47 IPP 1.47
  • SJR value: 0.367 SJR 0.367
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 18 Scimago H
    index 18
  • h5-index value: 16 h5-index 16
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Volume 4, issue 1
Mech. Sci., 4, 153-166, 2013
https://doi.org/10.5194/ms-4-153-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Recent advances and current trends in numerical multibody...

Mech. Sci., 4, 153-166, 2013
https://doi.org/10.5194/ms-4-153-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Apr 2013

Research article | 15 Apr 2013

Multiple-task motion planning of non-holonomic systems with dynamics

A. Ratajczak and K. Tchoń A. Ratajczak and K. Tchoń
  • Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50–372 Wrocław, Poland

Abstract. This paper addresses the motion planning problem in non-holonomic robotic systems. The system's kinematics and dynamics are represented as a control affine system with outputs. The problem is defined in terms of the end-point map of this system, using the endogenous configuration space approach. Special attention is paid to the multiple-task motion planning problem, i.e. a problem that beyond the proper motion planning task includes a number of additional tasks. For multiple-task motion planning two strategies have been proposed, called the egalitarian approach and the prioritarian approach. Also, two computational strategies have been launched of solving the motion planning problem: the parametric and the non-parametric. The motion planning and computational strategies have been applied to a motion planning problem of the trident snake robot. Performance of the motion planning algorithms is illustrated with computer simulations.

Publications Copernicus
Special issue
Download
Citation
Share