Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.052 IF 1.052
  • IF 5-year value: 1.567 IF 5-year
    1.567
  • CiteScore value: 1.92 CiteScore
    1.92
  • SNIP value: 1.214 SNIP 1.214
  • IPP value: 1.47 IPP 1.47
  • SJR value: 0.367 SJR 0.367
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 18 Scimago H
    index 18
  • h5-index value: 16 h5-index 16
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Volume 4, issue 1
Mech. Sci., 4, 113-129, 2013
https://doi.org/10.5194/ms-4-113-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Recent advances and current trends in numerical multibody...

Mech. Sci., 4, 113-129, 2013
https://doi.org/10.5194/ms-4-113-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Feb 2013

Research article | 19 Feb 2013

Analysis of servo-constraint problems for underactuated multibody systems

R. Seifried1 and W. Blajer2 R. Seifried and W. Blajer
  • 1Institute of Engineering and Computational Mechanics, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
  • 2Faculty of Mechanical Engineering, Technical University of Radom, ul. Krasickiego 54, 26-600 Radom, Poland

Abstract. Underactuated multibody systems have fewer control inputs than degrees of freedom. In trajectory tracking control of such systems an accurate and efficient feedforward control is often necessary. For multibody systems feedforward control by model inversion can be designed using servo-constraints. So far servo-constraints have been mostly applied to differentially flat underactuated mechanical systems. Differentially flat systems can be inverted purely by algebraic manipulations and using a finite number of differentiations of the desired output trajectory. However, such algebraic solutions are often hard to find and therefore the servo-constraint approach provides an efficient and practical solution method. Recently first results on servo-constraint problems of non-flat underactuated multibody systems have been reported. Hereby additional dynamics arise, so-called internal dynamics, yielding a dynamical system as inverse model. In this paper the servo-constraint problem is analyzed for both, differentially flat and non-flat systems. Different arising important phenomena are demonstrated using two illustrative examples. Also strategies for the numerical solution of servo-constraint problems are discussed.

Publications Copernicus
Special issue
Download
Citation
Share