Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics

Journal metrics

  • IF value: 1.211 IF 1.211
  • IF 5-year<br/> value: 1.705 IF 5-year
  • SNIP value: indexed SNIP
  • SJR value: indexed SJR
  • IPP value: indexed IPP
  • h5-index value: 15 h5-index 15
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Mech. Sci., 2, 205-215, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
20 Oct 2011
Compliant space mechanisms: a new frontier for compliant mechanisms
R. M. Fowler, L. L. Howell, and S. P. Magleby Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
Abstract. Compliant mechanisms offer distinct advantages for use in space that can address many of the issues encountered with current rigid-link space mechanisms. Compliant space mechanisms are defined as moveable mechanical assemblies that achieve their desired motion, force, or displacement by means of the deflection of flexible members and can perform a necessary function in the environments of launch and space. Many current space mechanisms are already highly optimized, yet they still experience inherent challenges, and it is unclear if significant improvements in performance can be made by continuing to refine current designs. Compliant space mechanisms offer a promising opportunity to change the fundamental approach to achieving controlled motion in space systems and have potential for dramatic increases in mechanism performance given the constraints of the space environment. This paper proposes the merger of the fields of compliant mechanisms and space mechanisms as a future direction of research in compliant mechanisms, discusses in detail the motivation to do so, and addresses the key factors of applying compliant mechanism technology to space mechanisms.

Citation: Fowler, R. M., Howell, L. L., and Magleby, S. P.: Compliant space mechanisms: a new frontier for compliant mechanisms, Mech. Sci., 2, 205-215,, 2011.
Publications Copernicus