An, C. H., Atkeson, C. G., Griffiths, J. D., and Hollerbach, J. M.:
Experimental evaluation of feedforward and computed torque control, IEEE T. Robotic Autom., 5, 368–373,
https://doi.org/10.1109/70.34773, 1989.

Anderson, B. D. and Moore, J. B.: Optimal control: linear quadratic
methods, Courier Corporation, Prentice-Hall, 2007.

Ascher, U. M., Mattheij, R. M., and Russell, R. D.: Numerical solution of
boundary value problems for ordinary differential equations, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, Siam, 13,
1994.

Bandyopadhyay, B. and Patil, M.: Sliding mode control with the
reduced-order switching function: an SCB approach, ISPRS Int. Geo.-Inf., 88.5, 1089–1101, https://doi.org/10.1080/00207179.2014.989409,
2015.

Bertotti, G.: Hysteresis in magnetism: for physicists, materials scientists,
and engineers, Academic press, 1998.

Chiasson, J.: Dynamic feedback linearization of the induction motor, IEEE T. Automat. Contr., 38, 1588–1594,
https://doi.org/10.1109/9.241583, 1993.

Dhaouadi, R., Ghorbel, F. H., and Gandhi, P. S.: A new dynamic model of
hysteresis in harmonic drives, IEEE T. Ind. Electron., 50, 1165–1171, https://doi.org/10.1109/TIE.2003.819661, 2003.

Dierks, T. and Jagannathan S.: Optimal control of affine nonlinear
continuous-time systems, Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010, 1568–1573,
https://doi.org/10.1109/ACC.2010.5531586, 2010.

Gandhi, P. S.: Modeling and control of nonlinear transmission attributes in
harmonic drive systems, Dissertation, Rice University, 2001.

He, F., Yang, A., and Dai, W.: The Design Method of Globe Fuzzy Sliding-Mode
Control in Friction Hystersis System, in: International Conference on
Intelligent Computation Technology and Automation, 2, 826–829,
https://doi.org/10.1109/ICICTA.2009.435, 2009.

Huang, S. J. and Chiu, C. M.: Optimal LuGre friction model identification
based on genetic algorithm and sliding mode control of a
piezoelectric-actuating table, T. I. Meas. Control, 31, 181–203, https://doi.org/10.1177/0142331208093938, 2009.

Ikhouane, F. and Rodellar J.: Systems with hysteresis: analysis,
identification and control using the Bouc-Wen model, John Wiley & Sons,
2007.

Kamlah, M. and Jiang Q., A constitutive model for ferroelectric PZT
ceramics under uniaxial loading, Smart Mater. Struct., 8, 441,
https://doi.org/10.1088/0964-1726/8/4/302, 1999.

Kircanski, N. M. and Goldenberg, A. A.: An experimental study of nonlinear
stiffness, hysteresis, and friction effects in robot joints with harmonic
drives and torque sensors, Int. J. Robot Res., 16, 214–239, https://doi.org/10.1177/027836499701600207, 1997.

Lee, S.-H., and Royston, T. J.: Modeling piezoceramic transducer hysteresis
in the structural vibration control problem, J. Acoust. Soc. Am., 108, 2843–2855, https://doi.org/10.1121/1.1323464,
2000.

Lee, D., Kim, H. J., and Shankar, S.: Feedback linearization vs. adaptive
sliding mode control for a quadrotor helicopter, Int. J. Control Autom., 7, 419–428,
https://doi.org/10.1007/s12555-009-0311-8, 2009.

Li, S., Yang, J., Chen, W. H., and Chen, X.: Disturbance observer-based
control: methods and applications, CRC press, 2014.

Long-quan, Y.: Uniform Smooth Approximating Functions for Absolute
Value Function, Mathematics in Practice and Theory, 45, 250–255, 2015.

Mayergoyz, I. D.: Mathematical models of hysteresis and their applications,
Academic Press, 2003.

Shampine, L. F., Reichelt, M. W., and Kierzenka, J.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c, available at: http://www.mathworks.com, last access: 9 July 2019.

Song, G., Zhao J. Zhou, X., and De Abreu-Garcia, J. A.: Tracking control of a
piezoceramic actuator with hysteresis compensation using inverse Preisach
model, IEEE-ASME T. Mech., 10, 198–209,
https://doi.org/10.1109/TMECH.2005.844708, 2005.

Tadayoni, A., Xie W. F., and Gordon B. W.: Adaptive control of harmonic
drive with parameter varying friction using structurally dynamic wavelet
network, Int. J. Control Autom., 9,
50–59, https://doi.org/10.1007/s12555-011-0107-5, 2011.

Xiaoquan, L., Heyun, L., and Junlin, H.: Load disturbance observer-based
control method for sensorless PMSM drive, IET Electr. Power App., 10, 735–743, https://doi.org/10.1049/iet-epa.2015.0550, 2016.

Yang, J., Zolotas, A., Chen, W. H., Michail, K., and Li, S.: Robust control
of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC
approach, ISA T., 50, 389–396,
https://doi.org/10.1016/j.isatra.2011.01.006, 2011.

Zhu, W., Chen, G., Bian, L., and Rui, X.: Transfer matrix method for
multibody systems for piezoelectric stack actuators, Smart Mater. Struct., 23, 095043, https://doi.org/10.1088/0964-1726/23/9/095043,
2014.