Akintseva, A. V. and Pereverzev, P. P.: Prospects for the development
of the theory of designing optimal cycles of machining in a multidimensional
space of control parameters, EDP Sciences, 129, 01018, https://doi.org/10.1051/matecconf/201712901018, 2017.

Alagumurthi, N., Panairadja, K., and Soundararajan, V.: Optimization of
grinding process through design of experiment (DOE) – a comparative study,
Mater. Manuf. Proc., 21, 19–21, https://doi.org/10.1080/AMP-200060605, 2007.

Amitay, G., Malkin, S., and Koren, Y.: Adaptive control optimization of
grinding, J. Eng. Ind., 103, 103–108, 10.31399/asm.hb.v16.a0002175, 1989.

Bellman, R.: Dynamic programming, Foreign Literature Publishing House,
Moscow, Russia, 1960.

Bertsekas, D.: Dynamic programming and optimal control, Prentice Hall, Reading, New
Jersey, USA, 1995.

Cahill, M. J., Bechtold, M. J., Fess, E., Wolfs, F. L., and Bechtold,
R.: Ultrasonic precision optical grinding technology, P. SPIE, 96330, https://doi.org/10.1117/12.2195977, 2015.

Fang, F., Cheng, K., Ding, H., Chen, S., and Zhao, L.: Sustainable
design and analysis of CNC machine tools: sustainable design index based
approach and its application perspectives, ASME Proceedings, 3, MSEC2016-8730, https://doi.org/10.1115/MSEC2016-8730, 2016.

Hashimoto, F. and Lahoti, G. D.: Optimization of set-up conditions for
stability of the centerless grinding process, CIRP Ann.-Manuf. Techn.,
53, 1271–274, https://doi.org/10.1016/S0007-8506(07)60696-9,
2004.

Korchak, S. N.: The Productivity of the grinding of steel parts,
Mashinostroenie, Moscow, Russia, 1974.

Krajnik, P., Drazumeric, R., Meyer, D., Kopac, J., and Zeppenfeld, C.:
Simulation of workpiece forming and centre displacement in plunge
centreless grinding, Int. J. Mach. Tool. Manu., 48, 824–831, https://doi.org/10.1016/j.ijmachtools.2007.12.008, 2008.

Lee, C. W.: Dynamic optimization of the grinding process in batch
production, J. Manuf. Sci. E.-T. ASME, 131, 485–494, https://doi.org/10.1115/msec_icmp2008-72212, 2008.

Lee, T. S., Ting, T. P., Lin, Y. J., and Htay, T.: A particle swarm
approach for grinding process optimization, J. Adv. Manuf.
Technol., 33, 1128–1135, https://doi.org/10.1007/s00170-006-0538-y, 2006.

Lin, L., Yong, L., Liwei, W., and Jun, X.: PMAC-based tracking control
system for 8-axis automated tape-laying machine, Chinese J. Aeronaut., 22, 558–563, 10.1016/S1000-9361(08)60141-7, 2009.

Liu, Y. M., Yang, T. Y., He, Z., and Li, J. Y.: Analytical modelling of
grinding process in rail profile correction cnsidering grinding pattern,
Arch Civ. Mech. Eng., 18, 669–678, 10.1016/j.acme.2017.10.009, 2017.

Lur'e, G. B.: Optimizing the grinding cycle by adaptive control,
Mashinostroitel, 3, 12–14, 1979.

Malkin, S.: Grinding cycle optimization, CIRP Ann., 30, 223–226, https://doi.org/10.1016/S0007-8506(07)60930-5, 1981.

Maris, M., Snoeys, R., and Peters, J.: Analysis of plunge grinding
operations, CIRP Ann., 241, 225–230, https://doi.org/10.1007/978-1-4613-1965-8_6, 1975.

Nathan, R. D., Vijayaraghavan, L., and Krishnamurthy, R.: Intelligent
estimation of burning limits to aid in cylindrical grinding cycle planning,
Heavy Veh. Syst., 80, 48–59, https://doi.org/10.1504/IJHVS.2001.001154, 2001.

Nishimura, T., Inasaki, I., and Yamamoto, N.: Study on optimization of
internal grinding cycle, T. Jpn. Soc. Mech.
Eng., 55, 1808–18013, https://doi.org/10.1299/kikaic.55.1808, 1989.

Pereira, W. X., Diniz, A. E., and Hassu, A.: Comparing different plunge
cylindrical grinding cycles based on workpiece roughness and process
vibration, J. Braz. Soc. Mech. Sci., 31, 161–163, https://doi.org/10.1590/S1678-58782009000200009, 2009.

Pereverzev, P. P. and Akintseva, A. V.: Automatic cycles
multiparametric optimization of internal grinding, Elsevier, Procedia
Engineer., 129, 121–126, https://doi.org/10.1016/j.proeng.2015.12.019, 2015.

Pereverzev, P. P. and Akintseva A. V.: The problem resolution of
designing of cycles in the conditions of modern automated production, Russian Engineering Research,
37, 523–529, https://doi.org/10.3103/S1068798X1706017X, 2017.

Pereverzev, P. P. and Pimenov D. Y.: Optimization of control programs
for numerically controlled machine tools by dynamic programming, Russian Engineering Research, 35,
135–142, https://doi.org/10.3103/S1068798X15020197,
2015.

Petrakov, Y. and Chamata, S.: Control of grinding the mandrel working
surface of cold-rolling mills, East. Eur. J. Enterpr.
Technol., 2, 55–63, https://doi.org/10.15587/1729-4061.2015.39042, 2015.

Pereverzev, P. P. and Pimenov, D. Y.: A grinding force model allowing
for dulling of abrasive wheel cutting grains in plunge cylindrical grinding,
J Frict. Wear., 37, 60–65, https://doi.org/10.3103/S106836661601013X, 2016.

Pereverzev, P. P., Popova, A. V., and Pimenov, D. Yu.: Relation between
the cutting force in internal grinding and the elastic deformation of the
technological system, Russian Engineering Research, 35, 215–217, https://doi.org/10.3103/S1068798X15030156, 2015.

Phan, A. M., Summers, M. P., and Parmigiani, J. P.: Optimization device
for grinding media performance parameters, Int. Mechan. Eng. Congr. Expos
(IMECE), 3, 915–923, https://doi.org/10.1115/IMECE2011-64210, 2011.

Raoufinia, M., Petrakov, Y. V., Ataei, A., Parand, R., and
Abou-El-Hossein, K.: Error compensation of complex three-dimensional
surfaces machined on computer-numeric-control grinding machine tools, J.
Appl. Sci., 9, 1356–1361, https://doi.org/10.3923/jas.2009.1356.1361,
2009.

Rowe, W. B. and Ebbrell, S.: Process requirements for cost-effective
precision grinding, CIRP Ann., 53, 255–258,
https://doi.org/10.1016/S0007-8506(07)60692-1, 2004.

Uhlmann, E., Koprowski, S., Weingaertner, W. L., and Rolon, D. A.:
Modelling and simulation of grinding processes with mounted points: Part I
of II – Grinding tool surface characterization, Proc. CIRP, 46, 599–602, https://doi.org/10.1016/j.procir.2016.03.205, 2016.