Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics

Journal metrics

  • IF value: 1.211 IF 1.211
  • IF 5-year<br/> value: 1.705 IF 5-year
    1.705
  • SNIP value: indexed SNIP
    indexed
  • SJR value: indexed SJR
    indexed
  • IPP value: indexed IPP
    indexed
  • h5-index value: 15 h5-index 15
Supported by
Logo Library of Delft University of Technology
Logo NWO
Affiliated to
Logo iftomm
Mech. Sci., 4, 319-331, 2013
http://www.mech-sci.net/4/319/2013/
doi:10.5194/ms-4-319-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
01 Oct 2013
Designing hybrid flexure systems and elements using Freedom and Constraint Topologies
J. B. Hopkins Lawrence Livermore National Laboratory, 7000 East Avenue L-223, Livermore, CA 94551, USA
Abstract. In this paper we introduce the principles necessary to synthesize hybrid flexure systems and elements. Flexure systems consist of rigid bodies that are joined together by flexure elements that elastically deform to guide the system's rigid bodies with desired degrees of freedom (DOFs). The principles introduced here for synthesizing hybrid flexure systems and elements are extensions of the Freedom and Constraint Topologies (FACT) synthesis approach. FACT utilizes a comprehensive library of geometric shapes from which designers can rapidly consider and compare a multiplicity of flexure concepts that achieve any desired set of DOFs. Prior to this paper, designers primarily used these shapes to synthesize parallel and serial flexure systems and elements. With this paper, designers may now use these same shapes to synthesize more general flexures that consist of various combinations of parallel and serial systems and elements (i.e., hybrid configurations). As such, designers can access a larger body of flexure solutions that satisfy demanding design requirements. Instructions for helping designers utilize or avoid the advantages and challenges of over-, under-, and exact-constraint are also provided. Hybrid systems and elements are analysed and designed as case studies.

Citation: Hopkins, J. B.: Designing hybrid flexure systems and elements using Freedom and Constraint Topologies, Mech. Sci., 4, 319-331, doi:10.5194/ms-4-319-2013, 2013.
Publications Copernicus
Download
Share